
L

Using Iterative Repair to @crease the
Responsiveness of Planning and Scheduling

Steve Chien, Russell Knight, Andre Stechert, Rob Sherwood, and Gregg Rabideau

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 9 1 109

(firstnarne.lastnarne) @jpl.nasa.gov

Abstract
The majority of planning and scheduling research has
focused on batch-oriented models of planning. This paper
discusses the use of iterative repair techniques to support a
continuous planning process as is appropriate for
autonomous spacecraft control. This allows the plan to
incorporate execution feedback - such as early or late
completion of activities, and over-use or under-use of
resources. In this approach, iterative repair supports
continuous modification and updating of a current working
plan in light of changing operating context.

Introduction
In recent years Galileo, Clementine, Mars Pathfinder,
Lunar Prospector, and Cassini have all demonstrated a new
range of robotic missions to explore our solar system.
However, complex missions still require large teams of
highly knowledgeable personnel working around the clock
to generate and validate spacecraft command sequences.
Increasing knowledge of our Earth, our planetary system,
and our universe challenges NASA to fly large numbers of
ambitious missions, while fiscal realities require doing so
with budgets far smaller than in the past. In this climate,
the automation of spacecraft commanding becomes an
endeavor of crucial importance.

Autonomous spacecraft are made possible by equipping
the spacecraft with on-board software that provides
knowledge and reasoning procedures to determine
appropriate actions that achieve mission goals, to monitor
spacecraft health during execution, and to recover
autonomously from possible faults (Muscettola et al.
1999). An on-board planner/scheduler is a key component
of such a highly autonomous system.

Recent experiences indicate the promise o f planning and
scheduling technology for space operations. Use of the
DATA-CHASER automated planning and scheduling
system (DCAPS) to command the DATA-CHASER shuttle
payload reduced commanding-related mission operations
effort by 80% and increased science return by 40% over
manually generated sequences (Chien et al. 1999). This
increase was possible because short turn-around times

(approximately 6 hours) imposed by operations constraints
did not allow for lengthy, manual optimization. And the
Remote Agent Experiment (ARC, JPL et al. 1999)
demonstrated the feasibility of flying AI software
(including a planner) to control a spacecraft.

This paper describes a further step in incremental
planning and scheduling. In this approach, rather than
constructing batch back-to back plans, a persistent agent
always has a plan for a fixed time span in to the future.

The remainder of this paper is organized as follows.
First, we describe our approach to interleaving planning
and execution and how it improves the responsiveness of
the planning component. Next, we describe technical
details of our approach to interleaving planning and
execution and how this approach is used to reduce this
response time of the planner/scheduler. We then highlight
how this system works using examples from spacecraft
operations. We then describe an empirical evaluation of
our approach in a stochastic domain. Finally, we describe
future work and related work and conclusions.

Integrating Planning and Execution
Traditionally, much of planning and scheduling research
has focused on a batch formulation of the problem. In this
approach (see Figure I), time is divided up into a number
of planning horizons, each of which lasts for a significant
period of time. When one nears the end of the current
horizon, one projects what the state will be at the end of
the execution of the current plan. The planner is invoked
with a new set of goals and this state as the initial state (for

I

Figure 1 Tradi t ional Batch "Plan then
Execute" Cvcle

mailto:jpl.nasa.gov

cxanIpIc thc liemote Agent Experiment operated i n this
I'ashion (Pcll ct ;d. 1997).

This approach has a number of drawbacks. In this batch
oricnlcd ~~loclc. typically planning is considered an off-line
process which rcquircs considerable computational effort,
Iwnce tllerc is ;I significant delay from the time the planner
is invoked to the time that the planner produces a new
plan.' I f a negative event occurs (e.g., a plan failure), the
response time until a new plan may be significant. During
this period the system being controlled must be operated
appropriately without planner guidance.

If a positive event occurs (e.g., a fortuitous opportunity),
again the response time may be significant. If the
opportunity is short lived (e.g., activities finishing early),
the system must be able to take advantage of such
opportunities without a new plan (because of the delay in
generating a new plan).

Finally, because the planning process may need to be
initiated significantly before the end of the current
planning horizon, it may be difficult to project 'what the
state will be when the current plan execution is complete.
If the projection is wrong the plan may have difficulty.

For example, consider the operations of a spacecraft. In
a traditional plan-sense-act cycle, planning is occurs on a
relatively long-term planning horizon. In this approach,
operations for a spacecraft would be planned on the ground
on a weekly or daily basis. The spacecraft state at the start
of the planning horizon would be determined (typically
predicted as the construction of the weekly plan would
need to begin significantly before the week of execution).
The science and engineering operations goals would then
be considered, and a plan for achieving the goals would be
generated. This plan or sequence would then be uplinked
to the spacecraft for execution. The plan would then be
executed onboard the spacecraft with little or no flexibility.
If an unexpected event occurred due to environmental
uncertainty or an unforeseen failure occurred, the
spacecraft would be taken into a safe state by fault
protection software. The spacecraft would wait in this state
until the ground operations team could respond and
determine a new plan. Correspondingly, if an
unpredictable fortuitous event occurs, the plan cannot be
modified to take advantage of the situation.

' As a data point, the planner for the Remote Agent
Experiment (RAX) flying on-board the New Millennium
Deep Space One mission (Muscettola et a1 1997) takes
approximately 4 hours to produce a 3 day operations plan.
RAX is running on a 25 MHz RAD 6000 flight processor
and uses roughly 25% of the CPU processing power.
While this is a significant improvement over waiting for
ground intervention, making the planning process even
more responsive (e.g.. on a time scale of seconds or tens of
seconds) to changes in the operations context, would
increase the overall time for which the spacecraft has a
consistent plan. As long as a consistent plan exists, the
spacecraft can keep busy working on the requested goals
and hence may be able to achieve more science goals.

A

To achieve a higher level of responsiveness in a cfynamic
phnning situation, we utilize a continuous planning
approach and have implemented a system called CASPER
(for Continuous Activity Scheduling Planning Execution
and Replanning). Rather than considering planning a batch
process i n which a planner is presented with goals and an
initial state, the planner has a current goal set. a plan, a
current state, and a model of the expected future state. At
any time an incremental update to the goals, current state,
or planning hori,zon (at much smaller time increments than
batch planning)-. may update the current state of the plan
and thereby invoke the planner process. This update may
be an unexpected event or simply time progressing
forward. The planner is then responsible for maintaining a
consistent, satisficing plan with the most current
information. This current plan and projection is the
planner's estimation as to what it expects to happen in the
world if things go as expected. However, since things
rarely go exactly as expected, the planner stands ready to
continually modify the plan. In each cycle from the point
of view of the planner the following occurs:

changes to the goals and the initial state first posted
to the plan,
effects of these changes are propagated through the
current plan projections (includes conflict
identification)
plan repair algorithms are invoked to remove
conflicts and make the plan appropriate for the
current state and goals.

This approach is shown in below in Figure 2. At each step,
the plan is created by using iterative repair with:

the portion of the old plan for the current planning

the updated goals and state; and
the new (extended)planning horizon.

horizon;

Figure2 Continuous Planning Incremental
Extension

' For the spacecraft control domain we are envisaging an
update rate on the order of 10s of seconds real time.

Even though our intent is t o mukc the planning proccss
very responsive (on the ordcr of seconds), there still
remains a synchronization process betwcen planning and
execution. We handle this by an activity commitment
process. Execution has an activity commitment window,
that represents the near future. When an activity overlaps
with this window (i.e. the activity is scheduled to begin
very soon) it is committed. This means that the planner is
forbidden from altering any aspect of this activity (such as
by moving the activity or altering the activity parameters).
Thus far we have focused on time-based commitment
strategies (e.g., commit any activities scheduled to begin in
the next T time units), however, our architecture supports
more complex commitment strategies (such as it being
dependent on the class of activity and allowing parameter
changes later than activity moves, etc.).

In addition to increasing the responsiveness of planning,
the continuous planning approach has additional benefits:

The planner can be more responsive to unexpected
(i.e., unmodeled) changes in the environment that
would manifest themselves as updates on the
execution status of activities as well as monitored
state and resource values.
The planner can reduce reliance on predictive
models (e.g., inevitable modeling errors), since it
will be updating its plans continually.
Fault protection and execution layers need to worry
about controlling the spacecraft over a shorter time
horizon (as the planner will replan within a shorter
time span).
Because of the hierarchical reasoning taking place
in the architecture there is no hard distinction
between planning and execution - rather more
deliberative (planner) functions reside in the longer-
term reasoning horizons and the more reactive
(execution) functions reside in the short-term
reasoning horizons. Thus, there is no planner to
executive translation process.

In conjunction with this incremental, continuous
planning approach, we are also advocating a hierarchical
approach to planning. In this approach, the long-term
planning horizon is planned only at a very abstract level.
Shorter and shorter planning horizons are planned in
greater detail, until finally at the most specific level the
planner plans only a short time in advance (just in time
planning). This paradigm is illustrated in Figure 3. Within
each of these layers, the planner is operating continuously
in the mode described above. However, the length of the
planning horizon, and the frequency with which the plan is
updated varies. In the longer-term more abstract levels, the
planning horizon is longer and the abstract plan is updated
less frequently. In the more detailed short-term level, the
plans are updated more frequently.

The idea behind this hierarchical approach is that only
very abstract projections can be made over the long-term
and that detailed projections can only be made in the short-

term bccnusc prediction is diflicult due to limited
computational rcsourccs and timely response requirements.
Hcncc therc is little ut i l i ty in constructing a detailed plan
far into the future - chances are i t will end up being re-
planned anyway. At one extreme the short-term plan may
n o t he “planned” at a 1 1 and may be a set o f reactions to the
current state in the context of the near-term plan. This
approach is implemented in the control loop described
above by making high-level goals active regardless of their
temporal placement, but medium and low-level goals are
only active i f they occur in the near future. Likewise,
conflicts are only regarded as important if they are high-
level conflicts or if they occur in the near future. As the
time of a conflict or goal approaches, it will eventually
become active and the elaboratiodplanning process will
then be applied to resolve the problem.

An Architecture for Integrated Planning and
Execution

Our approach to integration of planning and execution
relies on three separate classes of processes.

The Planner Process(es1 - this process represents the
planner, and is invoked to update the model of the plan
execution, to refine the plan, or when new goals are
requested.
The Execution Precedes) - this process is
responsible for committing activities and issuing
actual commands corresponding to planned activities.
The State Determination Processes - this process is
responsible for monitoring and estimating states and
resource values and providing accurate and timely
state information.
The Synchronization Process - this process enforces
synchronization between the execution, planner, and
state determination processes. This includes receiving
new goals, determining appropriate timeslices for
planning and locking the plan database to ensure non-
interference between state updates and the planner.

We describe planning, execution, and state determination
as sets of processes because often these logical tasks will
be handled by multiple processes. For example, spacecraft
attitude control execution might be handled by one
process, data management by another, etc. However, for

I i

I I 1 Long Term Mission Plan
I

I Figure 3 Hierarchical Planning Horizons

the purposes o f his paper (e.g.. integration of planning and
execution). the only relevant issue is that our
synchronizah>n strategy can be applied to a multiple
process scheme for planning, state determination, etc.

The ovcrall architecture for the continuous planning
approach is shown i n Figure 4. We now describe how each
of the four basic components operates.

The planner process maintains a current plan that is used
for planning (e.g. hypothesizing different courses of
action). It responds to requests to replan initiated by the
execution processes, activity commitments vfrom the
execution module, state (and resource) updates from state
estimation, and new goals (from external to the system).
All of these requests are moderated by the synchronization
process that queues the requests and ensures that one
request is complete before another is initiated. The
planners copy of the current plan is also where projection
takes place and hence it is here that future conflicts are
detected. However, as we will see below, requests to fix
conflicts occur by a more circuitous route.

The execution process is the portion of the system
concerned with a notion of "now". The execution module
maintains a copy of the plan that is incrementally updated
whenever the planner completes a request (e.g., a goal
change, state change, or activity change). This local copy
includes conflict information. The execution module has
three general responsibilities:

I . to commit activities in accordance with the
commitment policy as they approach their execution
time;

2. to actually initiate the execution of commands (e.g.,
processes) at the associated activity start times

3. to request re-planning when conflicts exist in the
current plan

The execution module performs I & 2 by tracking the
current time and indexing into relevant activities to commit
and execute them. The execution module also tracks
conflict information as computed by the projection of the
planner and submits a request for replanning to the
synchronization module when a conflict exists.'

The state estimation module is responsible for tracking
sensor data and summarizing that information into state
and resource updates. These updates are made to the
synchronization module that passes them on to the planners
plan database when coordination constraints allow.

The synchronization module ensures that the planner
module(s) are correctly locked while processing. At any

In our implementation replanning is initiated by the
execution module because this allows for the notion of
urgency information (e.g. closeness of the conflict to
current execution) to be incorporated in the decision to
replan. I f we did not wish to incorporate this information,
the planner module could make this request directly to the
synchronization module.

one time the planner can only bc performing one of its four
responsibilities: (re)planning. updating its goals,
incorporating a statc update, updating the execution
module's plan for execution. or updating commitment
status (otherwise we run the risk of race conditions causing
undesirable results). The synchronization module
serializes these requests by maintaining a FIFO task queue
for the planner and forwarding the next task only when the
previous task has finished.

The execution module also has a potential
synchronization issue. The planner must not be allowed to
modify activities (through replanning) if those activities
might already have been passed on to execution. We
enforce this non-interference by "commit"-ing all activities
overlapping a temporal window extending from now to
some short period of time in the future (typically on the
order of several seconds). We ensure that the planner is
called in a way that each replan request will always return
within this time bound and we enforce that the planner
never modifies a committed activity. This ensures that the
planner will not complete a replan with an activity
modified that is already in the past. Additionally, we use
the synchronization process to ensure that the Execution
module does not commit activities while the planner is
replanning. This prevents the planner from modifying
activities that have been committed subsequent to the
planner call (but still in the future).

Figure 4: CASPER Architecture

ST4 Spacecraft Landed
Operations Scenario Description

Space Technology 3 / Champollion (ST4) is a mission
concept for outer solar system exploration. In late 2005,
following a two-and-a-half-year journey, ST4 will match
orbits, or rendezvous, with Comet Tempe1 I , as the comet

I S moving way I r o m the Sun. ‘l’llc q m x c r a t t w ~ l l spend
5cvcr:tl months orbiting the COIIICI nucleus. nlaking highly
:Iccurate maps o f its surlacc .mcl rxtking some preliminnry
compositional nIe;1surements 0 1 ‘ the gas i n [he coma. The
claln returned f r o m ST4 will be used t o clctcrnlinc the mass.
shape, and density o f (hc comcl’s nucleus nncl to make
some early estimates about its composition.

Alter studying the nucleus I’rom orbit, the sp;lcecraft will
send ;I small vehicle (;I lander) t o the surface (An artists
depiction of the ST4 spacecraft Inncling is shown i n Figure
5). The touchdown itself will be quite tricky because
scientists do not know whether the surface of the comet
nucleus is hard, rocky, and rough, or soft and fluffy.
Therefore, the challenge engineers face in designing the
technology and instruments for this spacecraft is to be
prepared for the unexpected. One of the ways ST4
engineers are preparing for all possible scenarios is by
devcioping technologies to anchor the lander into the
comet’s surface no matter what its composition. Because
the gravity of the comet nucleus is so weak, the lander
must be anchored to the surface to permit drilling and
sampling.

Figure 5 Artist depiction of
ST4 lander landing on Comet

Once firmly in place. the lander will use a one-meter
long drill to collect samples and then feed them to a gas
chromatograph/mass spectrometer onboard the lander. This
instrument will analyze the composition of the nucleus
collected from various depths below the surface. The
lander will also carry cameras to photograph the comet
surface. Additional instruments planned onboard the lander
to determine the chemical makeup of the cometary ices and
dust will include an infrared/spectroIncter microscope and
a gamma-ray spectrometer. After several days on the
surface. the lander will bring a sample back to the orbiter
for return to Earth.

Continuous Planner ST4 Scenario
In order 10 test our Integrated planning and execution
approach. we have constructed a number of test cases
within the ST4 landed operatlons scenario. We have also
constructed a ST4 simulation, which accepts relatively

high-level comm~nds such as: MOVE-DRILL, START-

<device>. etc. The simulation covers operations of
hardware devices. In this test scenario the planner has
nwclels o f I I state and resource timelines. including drill
location, battery power, data buffer, and camera state. The
model also includes 19 activities such as uplink data, move
drill, compress data, take picture, and perform oven
experiment.

The continuous planner scenario has focused on the
comet lander portion of the ST4 mission. It comprises a
period of approximately 80 hours of lander operations on
the comet surface. It is intended to represent a class of test
cases against which to evaluate the performance of various
command and control strategies for this portion of the
mission.

The nominal mission scenario consists of three major
classes of activities: drilling and material transport,
instrument activity including imaging and in-situ materials
experiments, and data uplink. Of these, drilling is the most
complex and unpredictable.

The mission plan calls for three separate drilling
activities. Each drilling activity drills a separate hole and
acquires samples at three different depths during the
process: a surface sample, a 20 cm. deep sample, and a
one-meter deep sample. Acquiring a sample involves five
separate “mining” operations after the hole has been drilled
to the desired depth. Each mining operation removes 1 cm.
of material. Drilling rate and power are unknown a priori,
but there are reasonable worst-case estimates available.
Drilling can fail altogether for a variety of reasons.

One of the three drilling operations is used to acquire
material for sample-return. The other two are used to
supply material to in-situ science experiments onboard the
lander. These experiments involve depositing the samples
in an oven, and taking data while the sample is heated.
Between baking operations the oven must cool, but there
are two ovens, allowing experiments to be interleaved
unless one of the ovens fails.

We apply CASPER to this scenario to demonstrate three
capabilities: I) the ability to replan due to exogenous state
conflicts (such as equipment failures), 2) the ability to
replan due to exogenous resource contlicts (such as over-
subscription of memory buffers), 3) and the ability to
replan due to activity updates (such as drilling finishing
late.)

One of the continuous planner capability to replan to
perform a resource substitution after a component failure
(Objective I) . The three planned sample activities each
use oven I for baking the comet samples. During the
simulation run, a failure was injected on oven 1. This
changed the oven I state to “failed” for the remainder of
the simulation. Because the second and third sample
activities (as planned) use oven 1, these sample activities
are in conflict because the sample activities require an
operational oven (but are planned to use a “failed” oven).
The planning system recognizes this conflict as a state
required by an activity being different from the actual (or

DRILL, STOP-DRILL, TAKE-PICTURE, TURN-ON

projected) state. The planner then attempts several lixes,
including finding an activity to change the incorrect state.
Unfortunately, there are no such activities to "fix" the
oven. However, the sample activities require an oven
resource, and there are two ovens on the ST4 lander.
Hence the planner is able to find a repaired plan in which
the second and third samples use oven 2 (see Figure 5.)
The planning system could also have deleted the activity in
conflict. However, the prioritization with the repair
algorithm always considers moving or adding other
activities to solve the conflict before deleting the
conflicting activity.

Another continuous planner capability is to replan when
a aggregate resource is over-subscribed or under-utilized
(Objective 2). The data collected during the sample
activities is compressed and then stored in the data buffer
of the lander. This data is uplinked to the orbiting
spacecraft at a later time. The planner uses estimates of the
amount of data compression to plan when uplink activities
are necessary. Because the compression algorithms are
content dependent, these estimates may significantly
deviate from actual achieved compression.

After Oven 1 Failure oven 1
fails

Figure 5 Oven State Example

sample activity is greater than expected because the
compression achieved is less than originally estimated.
The planner realizes that it will not have sufficient buffer
memory to perform the third sample activity. This results
in an over-subscription of the data buffer depletable
resource. The planner knows that such a conflict can be
repaired by: 1) removing activities that contribute to
resource usage or 2) adding an activity which renews the
resource. In this case these two options correspond to

I I

10 MB 15MB 20MB

buffer
data [5 MB

After Experiment 6

30 MB
25 MB confllct data 15 MB

buffer [~ M B

After Replanning

, I

" . .-
data 25 Mm

butter I 5 MB
15 MB

5 MB 'OM'

Figure 6 Over-subscribed
Data Buffer Example

-
Initial Plan
Activities '-"""\

men expenmen(~4
After End-time Update
Activities t-rmnw j

riohbd lmponl
con.trmin(contllel

Len expenmen1 A 4

After Replanning
Activities kWmnaI\t

oven expenmen1 A 4

Figure 7 Activity Update
deleting the third sample activity or adding an uplink
activity. (The uplink activity renews the buffer resource by
uplinking data to the orbiter.) The planner resolves this
conflict by adding an uplink activity after the second
sample activity, freeing memory for the third sample
activity (see Figure 6.)

Another demonstrated CASPER capability is to replan
based on activity parameter updates (Objective 3). In the
scenario, the mining operation using the drill takes longer
than expected. This delays the oven experiment because
no sample is yet prepared. The actual conflict is a
violation of the temporal relationship between the mining
activity and the oven experiment activity. (Mining must be
completed before we continue to the oven experiment; see
Figure 7.) In this example, the planner moves the oven
experiment activity in order to repair this conflict.

-

Empirical Evaluation
In order to validate the effectiveness o f our continuous
planning approach we have performed a number ot
empirical tests t o measure CASPER performance i n tcrnis
of:

I .

2.

3.

responsiveness - the ability to deal with execution
feedback in a timely fashion;
robustness - the ability to produce executable plans
despite run-time variations in state, resource, and
activity durations; and
plan effectiveness - a measure of the overall
goodness of executed activities (with respect to
achieving plan goals).

We assessed these performance metrics using a stochastic
version of the ST4 simulation described above. This
simulation had a number of random variables, which are
described below.

Compression - we model the compression for
science data as a normal random variable with a
mean of 0.9 and a standard deviation of 0.25*0.9.
This has the effect of forcing the planner to respond
to buffer over-runs (as described above) and buffer
under-runs (to optimize the plan).
Drilling Time - we model the amount of time to
drill in minutes as a random variable with mean of
30 and standard deviation of 3 .
Drilling power - we model the actual power
consumption from drilling in watts as a normal
random variable with mean 40 and standard
deviation 4.
Oven Failure - we model oven failure occurrence as
Poisson distributed with each oven having a 50%
chance of failure over the entire mission horizon.
Data Transmission Rate: we model the time to
transmit data in kilobits per second as a normal
random variable with a mean of 100 and a standard
deviation of 10. This is intended to model the
variability in communications to the orbiter.
Oven Warming and Cooling Times: we model the
amount of time to heat up the sample and for the
oven to cool down in minutes as random variables
with means of 30 and 120, and standard deviations
of 3 and 12, respectively. This is intended to model
the unknown thermal properties of the samples.

In our tests we compare the CASPER continuous planning
repair approach to two alternative approaches:

1. Batch planning with no feedback - in this approach
an operations plan is generated from the initial state
and this plan is executed. No feedback from
execution is used. We run this approach using
nominal times and resource usages and worse-case
estimates using the 1 - 0 estimates for random
variables.

I3x[ch replanning on failure - in (tits approach an
opera[ions plan is generated from scratch. When an
actlvlty fails, the execution system halts execution
and replans from scratch (rather than modifying the
existing plan as i n the CASPER approach). NO
activities are executed while the planner is
replanning. As in Case I we run this approach
using both nominal models and worse-case models.

In order to assess the responsiveness of the system, we
measured the average amount of time from the receipt of
an update that required replanning to the time when a
conflict free plan is available (see Table 1: Time to Correct
Plan).

In order to assess the robustness of the system, we track
the number of times when an invalid activity is
commanded (see Table 1 : Number of Invalid Commands).

In order to assess the plan effectiveness, we measure the
science return of executed activities (as measured by
number of samples drilled and analyzed in situ where the
data was successfully transmitted to the orbiter) 24 science
goals are originally submitted to the system, and we report
the number completed successfully. (See Table I: Number
of Achieved Science Goals).

invalid # achieved time to
commands science goals correct plan

CASPER

54.7691 2.1941 Batch
20.063 2.365

planning

replanning
Batch 20.125 6.722 17.977

I Table 1 Performance Comparison Averages I -
In our setup, CASPER was running on a Sun

Sparcstation Ultra 60 with a 359 MHz process with 1.1 GB
Memory. During each run, the simulator updates the plan
an average of 18,000 times. (Most of these are battery
power level updates.) On average, only 86 updates result in
conflicts that should be handled by the planner/scheduler.

We observe that CASPER outperforms batch planning
and batch replanning in the ST4 domain in terms of
spacecraft commanding and achieving science goals.

Note that batch planning requires no time to correct an
updated plan because it does not replan, and therefore is
superior to CASPER in terms of the amount of time
required to correct a plan. However, batch planning suffers
considerably due to incomplete data transmissions and
spoiled experiments where samples where placed into
inappropriately configured or failed ovens.

Batch replanning performs much better, but the replan
time translates into missed opportunities to plan and
schedule science goals. Also, more invalid commands are
executed due to the time it takes to replan.

CASPER does execute some invalid commands due to
the fact that it takes some time to correct an invalid plan,
hut CASPER achieves far more science goals.

Discussion Related Work
While the current prototype has been tested on a range of
cases i n which state updates require replanning, we have
focused o n execution feedback that cause conflicts in thc
plan. In the case of the failed oven, buffer over-use, and
activity completion time problem, the state update (when
propagated through the plan) causes a conflict. There are
other cases in which a state update enables a plan
improvement. For example,

0 battery power usage might be lower than expected
enabling insertion of an additional sample activity
content-dependent compression might perform
better than expected allowing storage of additional
experiment data; or
drilling might be faster than expected again
allowing for additional science activities.

In each of these cases, the planner needs to be aware of the
potential for improvement in the current plan and be
triggered to attempt to take advantage of the fortuitous
situation. In related work (also submitted to this
conference), we have been developing plan optimization
techniques for representing soft constraints (preferences)
and improving plans with respect to these preferences (e.g.,
do more science). Our approach to optimization is an
anytime, incremental approach, thus the timeslices for the
planner can be used to attempt to improve the plan if there
are no conflicts in the plan.

A second issue is that in the current prototype, the
planner can only respond to unexpected changes on
activity boundaries. This is a significant limitation when
there are activities that have extremely long durations.
This limitation is because the planner does not have a
model detailed enough to predict the resultant state if
activities are interrupted in mid-execution. It would be
useful if the planner could incorporate a model that could
represent interruptible activities and act appropriately.
Currently such phenomenon must be modeled by breaking
the activity into smaller activities.

While we have tested our prototype on a range of
realistic scenarios, we would like to have a larger set of
missions and concepts to test against. Because CASPER is
currently being used for autonomous rover applications, we
are in the process of adapting rover simulations for similar
testing. Additionally we anticipate having access to
several other spacecraft simulations. We intend to further
test and validate our approach against these missions.

Another interesting area for future work is investigating
more powerful commitment strategies. One could easily
envisage problems in which different classes of activities
would have different possibilities for interruption or might
be terminatable with sufficient lead-time. Enabling the
planner to represent these contexts and handle them
appropriately would be desirable.

The high-speed local search techniques used in our
continuous planner prototype are an evolution of those
developed for the DCAPS system (Chien et a l . 1999) that
has proven robust in actual applications. in terms of
related work, iterative algorithms have been applied to a
wide range of computer science problems such as traveling
salesman (Lin & Kernighan 1973) as well as Artificial
Intelligence Planning (Biefeld & Cooper 1991, Chien &
DeJong 1994, Zweben et al. 1994, Hammond 1989,
Sussman 1973). Iterative repair algorithms have also been
used for a number of scheduling systems. The
GERRY/GPSS system (Deale et al. 1994, Zweben et al.
1994) uses iterative repair with a global evaluation
function and simulated annealing to schedule space shuttle
ground processing activities. The Operations Mission
Planner (OMP) (Biefeld & Cooper 1991) system used
iterative repair in combination with a historical model of
the scheduler actions (called chronologies) to avoid cycling
and getting caught in local minima. Work by Johnston and
Minton (Johnston & Minton 1994) shows how the min-
conflicts heuristic can be used not only for scheduling but
also for a wide range of constraint satisfaction problems.

The OPIS system (Smith 1994) can also be viewed as
performing iterative repair. However, OPIS is more
informed in the application of its repair methods in that it
applies a set of analysis measures to classify the bottleneck
before selecting a repair method. With iterative repair and
local search techniques, we are exploring approaches
complementary to backtracking refinement search
approach used in the New Millennium Deep Space One
Remote Agent Experiment Planner (ARC 1999).

Excalibur (Narayek, 1998) represents a general
framework for using constraints to unify planning and
scheduling constraints, uncertainty, and knowledge. This
framework is consistent with the CASPER design,
however in this paper we have focused on a lower-level.
Specifically, we have focused on re-using the current plan
using iterative repair and specific locking mechanisms to
avoid race conditions.

Work on the PRODIGY system (Cox & Veloso 1998)
has indicated how goals may be altered due to
environmental changesifeedback. These changes would be
modeled in our framework via task abstractionhetraction
and decomposition for potentially failing activities. Other
PRODIGY work (Veloso, Pollack, & Cox 1998) has
focused on determining which elements of world state need
to be monitored because they affect plan appropriateness.
In our approach we have not encountered this bottleneck,
our fast state projection techniques enable us to detect
relevant changes by noting the introduction of conflicts
into the plan.

Work on CPEF (Continuous Planning and Execution
Framework) (Myers 1998) uses PRS, AP, and SIPE-2, also
represents a similar framework to integrating planning and

execution. CPEF and CASPER differ in ;1 number o f
ways. First, CPEF attempts to cull out key aspects of the
world to monitor (as is necessary in general open-world
domains). They also suggest the use of iterative repair
(they use the term conservative repairs). And their
taxonomy of failure types is very similar to ours in terms
of action failure and re-expansion of task networks (re-
decomposition). However, in this paper we have focused
on lower level issues in synchronization and timing.

Work in the O-Plan system has also addressed rapid
replanning (Drabble et ai. 1997). They describe an
approach that generally invokes the planner with the
current plan in a repair mode from the current state. In this
way their approach and the CASPER one are very similar.
However, we have focused on lower-level timing and
synchronization issues necessary for execution and
planning on a shorter timescale.

Work in the 3T system (Bonasso et al. 1997) has also
examined issues of integrating planning and execution.
Again, they present a framework consistent with our
architecture but we have focused on lower-level timing
issues.

Conclusions
This paper has described an approach to integrating

planning and execution for spacecraft control and
operations. This approach has the benefit of reducing the
amount of time required for an onboard planning process
to respond to changes in the environment or goals. In our
approach, environmental changes or inaccurate models
cause updates to the current state model and future
projections. Additionally, the planner’s current goal set
may change. In either case, if these changes matter (e.g.,
the current plan no longer applies) they will cause conflicts
in the current plan. These conflicts are attacked using fast,
local search and iterative repair methods

Acknowledgements
This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration. Portions of this work were supported by:
the Autonomy Technology Program, managed by Dr.
Richard Doyle and with Melvin Montemerlo as the
headquarters program executive, NASA Code SM and by
the Mission Data Systems Project, managed by Allan
Sacks, NASA Code S, and by the JPL Telecommunications
and Mission Operations Technology Program, Mission
Services Element managed by Peter Shames. Comments
and feedback from Bob Rasmussen, Kim Gostelow, Dan
Dvorak, Erann Gat. Glenn Reeves, and Ed Gamble were
very helpful in formulating and refining the ideas presented
in this paper.

References
NASA Ames & JPL, Remote Agent Experiment Web

Pngc, I1(1p://rax.al.c.rl~lsa.~~ov/, 1999.
E. Biefeld and L. Cooper, ”Bottleneck Iclcntification

Using Process Chronologies,” Proceedings o f ’ the 1991
International Joint Conference on Artificid Intelligence,
Sydney, Australia, 1991.

R. P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D.
Miller, M. Slack, “Experiences with an architecture for
intelligent, reactive agents. Journal of experimental and
theoretical artificial intelligence 9(2).

S . Chien and G. DeJong, “Constructing Simplified Plans
via Truth Criteria Approximation,” Proceedings of the
Second International Conference on Artificial Intelligence
Planning Systems, Chicago, IL, June 1994, pp. 19-24.

S. Chien, G. Rabideau, J. Willis, and T. Mann,
“Automating Planning and Scheduling of Shuttle Payload
Operations,” Artijicial Intelligence Journal, 1999.

M. Cox & M. Veloso, ”Goal Transformation in
Continuous Pannning,“ in Proceedings of the AAAI Fall
Symposium on Distributed Continual Planning, 1998.

M. Deale, M. Yvanovich, D. Schnitzius, D. Kautz, M.
Carpenter, M. Zweben, G. Davis, and B. Daun, “The Space
Shuttle Ground Processing System,” in Intelligent
Scheduling, Morgan Kaufman, San Francisco, 1994.

B. Drabble, J. Dalton, A. Tate, “Repairing Plans on the
Fly,” Working Notes of the First International Workshop
on Planning and Scheduling for Space, Oxnard, CA 1997.

A. Fukunaga, G. Rabideau, S. Chien, D. Yan, “Towards
an Application Framework for Automated Planning and
Scheduling,” Proceedings of the 1997 International
Symposium on Artificial Intelligence, Robotics and..
Automation for Space. Tokyo, Japan, July 1997.

K. Hammond, “Case-based Planning: Viewing Planning
as a Memory Task,” Academic Press, San Diego,-1989.

M. Johnston and S. Minton, “Analyzing a Heuristic
Strategy for Constraint Satisfaction and Scheduling,” in
Intelligent Scheduling, Morgan Kaufman, San Francisco,
1994.

H. Kautz, B. Selman, “Pushing the Envelope: Planning,
Propositional Logic, and Stochastic Search,” Proceedings
AAA196.

S. Lin and B. Kernighan, “An Effective Heuristic for the
Traveling Salesman Problem,” Operations Rescarch Vol.
21, 1973.

D. Mittman (mission operations and planning lead for
Space Infra-red Telescope (SIRTF) Mission, personal
communications, April 1997.

N. Muscettola, B. Smith, S. Chien , C. Fry , K. Rajan, S.
Mohan, G. Rabideau , D. Yan, “On-board Planning for the
New Millennium Deep Space One Spacecraft,”
Proceedings .f the 1997 IEEE Aerospace Conference,
Aspen, CO, February, 1997, v. I , pp. 303-3 18.

K. Myers, “Towards a Framework for Continuous
Planning and Execution”, in Proceedings of the AAAI Fall
Symposium o n Distributed Continual Planning, 1998.

A. Nareyek, “A Planning Model for Agents in Dynamic
and Unicertain Real-Time Environments,” in Integrating

Planning. Schcduling, and Execution i n Dynamic and
Uncertain Environments, AIPS98 Workshop. AAAI
Technical Report WS-98092.

B. Pell, D. Bernard, S. Chien, E. Gat, N. Muscettola, P.
Nayak, M. Wagner, and B. Williams, “ An Autonomous
Spacecraft Agent Prototype,” Autonomous Robots. March
1998.

R. Ridenoure, New Millennium Mission Operations
Study (and Personal Communication to Guy Man), June
1995.

R. Simmons, “Combining Associational and Causal
Reasoning to Solve Interpretation and Planning Problems,”
Technical Report, MIT Artificial Intelligence Laboratory,
1988.

S. Smith, “OPIS: An Architecture and Methodology for
Reactive Scheduling,” in Intelligent Scheduling, Morgan
Kaufman, 1994.

G. Sussman, “A Computational Model of Skill
Acquisition,” Technical Report, MIT Artificial Intelligence
Laboratory, 1973.

M. Veloso. M. Pollack, M. Cox, “Rationale-based
monitoring for planning in dynamic environments,”
Proceedings Artificial Intelligence Planning Systems
Conference, Pittsburgh, PA, 1998.

M. Zweben, B. Daun, E. Davis, and M. Deale,
“Scheduling and Rescheduling with Iterative Repair,” in
Intelligent Scheduling, Morgan Kaufman, San Francisco,
1994.

